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1.   General information about the Workshop 

The concept of beam acceleration in solid-state plasma of crystals or nanostructures 
like CNTs (or alumna honeycomb holes) has the promise of ultra-high accelerating 
gradients O(1-10) TeV/m, continuous focusing and small emittances of, e.g., muon 
beams and, thus, may be of interest for future high energy physics colliders. The goal of 
the "Workshop on Beam Acceleration in Crystals and Nanostructures" which took place 
at Fermilab on June 24 and 25, 2019, was to assess the progress of the concept over the 
past two decades and to discuss key issues toward proof-of-principle demonstrations and 
next steps in theory, modeling and experiment. The Workshop was endorsed by the 
American Physical Society (APS) Division of Physics of Beams (DPB) and the APS 
Topical Group in Plasma Astrophysics (GPAP), the International Committee on Ultra-
High Intensity Lasers (ICUIL) and the International Committee on Future Accelerators’s 
Panel on Advanced and Novel Accelerators  (ICFA ANA). 

The Workshop had 40 participants from 6 countries, representing all relevant areas 
of research such as accelerators and beam physics, plasma physics, laser physics, and 
astrophysics. More than 20 presentations covered a broad range of topics relevant to 
acceleration in crystals and carbon nanotubes (CNTs), including: 

  1. overview of the past and present theoretical developments toward crystal 
acceleration, ultimate possibilities of the concept;  

  2. concepts and prospects of PeV colliders for HEP;  
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  3. effective crystal wake drivers: beams, lasers, other;  
  4. beam dynamics in crystal acceleration;  
  5. instabilities in crystal acceleration (filamentation, etc.);  
  6. acceleration in nanostructures (CNTs, etc);  
  7. muon sources for crystal acceleration;  
  8. application of crystal accelerators (X-ray sources, etc.); 
  9. astrophysical evidence of wakefield acceleration processes; 
  10. steps toward "proof-of-principle": 1 GeV gain over 1 mm, open theory 

questions, modeling and simulations;  
  11. possible experiments at FACET-II, FAST, AWAKE, AWA, RHIC, LHC, 

CEBAF, or elsewhere 
There were many vivid discussions on these subjects. All the talks and summaries of 

the discussions are available at  https://indico.fnal.gov/event/19478/ . 

2.   Major Outcomes 

Several interesting proposals for further explorations or experimental tests were made by 
Sahel Hakimi, et al. (University of California, Irvine, on how to drive wakes in CNTs  by 
ultimate or existing X-ray pulses from, e.g., the LCLS SASE FEL);  by Aakash Sahai, et 
al. (University of Colorado, on production of detectable number of muons and their 
subsequent acceleration either at BELLA or FACET-II facilities); by Vladimir Shiltsev, 
et al. (Fermilab,  on demonstration of effective micromodulation of electron beams at 
FAST and FACET-II and subsequent experiments with micromodulated beams sent 
through CNTs at FAST with kA peak current type beams and then at the FACET-II 
facility with upto 300 kA bunches, e.g., to demonstrate the CNT channeling or to study 
the electron beam filamentation phenomena in structured materials); by Gennady 
Stupakov (SLAC, on possibility to use 1-nm-SASE-modulated electron bunches at the 
end of LCLS-I undulators to excite crystals and demonstrate acceleration); by Johnathan 
Wheeler, et al., (Ecole Polytechnique, to use the APOLLO laser facility to demonstrate 
Peta-Watt optical pulses/single cycle pulses via thin-film-compression technique); by  
Valery Lebedev (FNAL, to explore effectiveness of the wake excitation in crystals or 
CNTs by high-Z high energy ions, e.g. by 450 GeV ion beams from the CERN SPS 
available at the AWAKE facility, and observation of possible acceleration of externally 
injected electrons).   
 
Formation of the research teams has began and follow-up presentations are being planned 
for the  FACET-II Annual Science Workshop (SLAC, October 29 – November 1,  2019).  
 
These Proceedings of the Workshop are co-edited by Profs. Gerard Mourou (Ecole 
Polytech, 2018 Nobel Prize in Physics), Toshiki Tajima (UCI), Swapan Chattapdhyay 
(NIU) and Vladimir Shiltsev (Fermilab). 
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Fig. 1.  Group photo of the Workshop. 
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